Modelling Polydisperse Polymer Melts with Single Integral Constitutive Equations - David Wayne Mead - 1988

Constitutive Equations for Polymer Melts and Solutions - Ronald G. Larson - 2013-10-22

Constitutive Equations for Polymer Melts and Solutions presents a description of important constitutive equations for stress and birefringence in polymer melts, as well as in dilute and concentrated solutions of flexible and rigid polymers, and in liquid crystalline materials. The book serves as an introduction and guide to constitutive equations, and to molecular and phenomenological theories of polymer motion and flow. The chapters in the text discuss topics on the flow phenomena commonly associated with viscoelasticity: fundamental elementary models for understanding the rheology of melts, solutions of flexible polymers, and advanced constitutive equations; melts and concentrated solutions of flexible polymer; and the rheological properties of real liquid crystal polymers. Chemical engineers and physicists will find the text very useful.

Constitutive Equations for Polymer Melts and Solutions - Ronald G. Larson - 2013-10-22

Constitutive Equations for Polymer Melts and Solutions presents a description of important constitutive equations for stress and birefringence in polymer melts, as well as in dilute and concentrated solutions of flexible and rigid polymers, and in liquid crystalline materials. The book serves as an introduction and guide to constitutive equations, and to molecular and phenomenological theories of polymer motion and flow. The chapters in the text discuss topics on the flow phenomena commonly associated with viscoelasticity: fundamental elementary models for understanding the rheology of melts, solutions of flexible polymers, and advanced constitutive equations; melts and concentrated solutions of flexible polymer; and the rheological properties of real liquid crystal polymers. Chemical engineers and physicists will find the text very useful.

Evaluation of constitutive equations for polymer melts and solutions in complex flows - Hans Baaijens - 1994

New Constitutive Equations for Orientable Polymer Melts - Celine Almonacil - 1996

New Constitutive Equations for Orientable Polymer Melts - Celine Almonacil - 1996

Rheology for Polymer Melt Processing - J.-M. Piau - 1996-10-10

Rheology for Polymer Melt Processing

This book presents the main results obtained by different laboratories involved in the research group Rheology for polymer melt processing which is associated with French universities, schools of engineering, and the CNRS (Centre National de la Recherche Scientifique - France). The group comprises some 15 research laboratories of varied disciplines (chemistry, physics, material sciences, mechanics, mathematics), but with a common challenge viz. to enhance the understanding of the relationships between macromolecular species, their rheology and their processing. Some crucial issues of polymer science have been addressed: correlation of viscoelastic macroscopic bulk property measurements and models, slip at the wall, extrusion defects, correlation between numerical flow simulations and experiments. Features of the book: • The book is unique in that it allows one to grasp the key issues in polymer rheology and processing at once through a series of detailed state-of-the-art contributions, which were previously scattered throughout the literature. • Each paper was reviewed by experts and the book editors and some coordination was established in order to achieve a readable and easy access style. • Papers have been grouped in sections covering successively: Molecular dynamics, Constitutive equations and numerical modelling, Simple and complex flows. • Each paper can be read independently. Since the book is intended as an introduction to the main topics in polymer processing, it will be of interest to graduate students as well as to scientists in academic and industrial laboratories.

Rheology for Polymer Melt Processing

This book presents the main results obtained by different laboratories involved in the research group Rheology for polymer melt processing which is associated with French universities, schools of engineering, and the CNRS (Centre National de la Recherche Scientifique - France). The group comprises some 15 research laboratories of varied disciplines (chemistry, physics, material sciences, mechanics, mathematics), but with a common challenge viz. to enhance the understanding of the relationships between macromolecular species, their rheology and their processing. Some crucial issues of polymer science have been addressed: correlation of viscoelastic macroscopic bulk property measurements and models, slip at the wall, extrusion defects, correlation between numerical flow simulations and experiments. Features of the book: • The book is unique in that it allows one to grasp the key issues in polymer rheology and processing at once through a series of detailed state-of-the-art contributions, which were previously scattered throughout the literature. • Each paper was reviewed by experts and the book editors and some coordination was established in order to achieve a readable and easy access style. • Papers have been grouped in sections covering successively: Molecular dynamics, Constitutive equations and numerical modelling, Simple and complex flows. • Each paper can be read independently. Since the book is intended as an introduction to the main topics in polymer processing, it will be of interest to graduate students as well as to
Equibiaxial Extension of Two Polymer Melts: Polystyrene and Low Density Polyethylene - J. C. W. Chien - 1984
Stress relaxation after rapid extensional strain was measured to obtain the extensional relaxation modulus. The time dependence of the relaxation modulus was found to be the same in extension as in shear, given by the relaxation modulus of linear viscoelasticity. The strain dependence was markedly different than in shear. Separation of time and strain dependence into a product of two functions is suggested by the experimental results. This is a strong support for the separability assumption and simplifies the formulation of rheological constitutive equations. A polymer with linear macromolecules exhibited much stronger strain dependence than a polymer with long chain branched macromolecules. The parameters of an integral constitutive equation were determined in rapid strain experiments and the constitutive equation was tested experimentally with stress growth at start-up of equibiaxial extension. Equibiaxial extensional flow was generated with a Rheometrics RDS-LA, using the lubricated squeezing technique.

Equibiaxial Extension of Two Polymer Melts: Polystyrene and Low Density Polyethylene - J. C. W. Chien - 1984
Stress relaxation after rapid extensional strain was measured to obtain the extensional relaxation modulus. The time dependence of the relaxation modulus was found to be the same in extension as in shear, given by the relaxation modulus of linear viscoelasticity. The strain dependence was markedly different than in shear. Separation of time and strain dependence into a product of two functions is suggested by the experimental results. This is a strong support for the separability assumption and simplifies the formulation of rheological constitutive equations. A polymer with linear macromolecules exhibited much stronger strain dependence than a polymer with long chain branched macromolecules. The parameters of an integral constitutive equation were determined in rapid strain experiments and the constitutive equation was tested experimentally with stress growth at start-up of equibiaxial extension. Equibiaxial extensional flow was generated with a Rheometrics RDS-LA, using the lubricated squeezing technique.

Constitutive Equations for Linear and Long-chain-branched Polymer Melts - Saeid Kheirandish - 2005
Constitutive Equations for Linear and Long-chain-branched Polymer Melts - Saeid Kheirandish - 2005
Polymer Melt Processing - Morton M. Denn - 2008-08-04
Most of the shaping in the manufacture of polymeric objects is carried out in the melt state, as it is a substantial part of the physical property development. Melt processing involves an interplay between fluid mechanics and heat transfer in rheologically complex liquids, and taken as a whole it is a nice example of the importance of coupled transport processes. This book is on the underlying foundations of polymer melt processing, which can be derived from relatively straightforward ideas in fluid mechanics and heat transfer; the level is that of an advanced undergraduate or beginning graduate course, and the material can serve as the text for a course in polymer processing or for a second course in transport processes.

Polymer Melt Processing - Morton M. Denn - 2008-08-04
Most of the shaping in the manufacture of polymeric objects is carried out in the melt state, as it is a substantial part of the physical property development. Melt processing involves an interplay between fluid mechanics and heat transfer in rheologically complex liquids, and taken as a whole it is a nice example of the importance of coupled transport processes. This book is on the underlying foundations of polymer melt processing, which can be derived from relatively straightforward ideas in fluid mechanics and heat transfer; the level is that of an advanced undergraduate or beginning graduate course, and the material can serve as the text for a course in polymer processing or for a second course in transport processes.

Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids - A.I. Leonov - 2012-12-06
This monograph presents theoretical and experimental studies of flows of elastic liquids. Falling into this category are particularly the melts and concentrated solutions of such flexible-chain polymers as polyethylene, polystyrene, and polypropylene, all of which are widely used in polymer processing. These polydisperse polymers vary greatly, from batch to batch, in their mechanical properties and 20% variation in a property is believed to be good enough. I 7 All recent books - devoted to the rheology of polymers do not answer the question of which constitutive equations should be used for solving the fluid mechanic problems of polymer processing in the usual case of an appreciable nonlinear region of deformation where nonlinear effects of shear and extensional elasticity are very important. Viscoelastic constitutive equations cited commonly (see, e.g. Refs 5 and 6) do not describe simultaneously even the simplest cases of deformations, viz. simple shear and uniaxial extension. Moreover, some of them are internally inconsistent ent and sometimes display highly unstable behaviour in simple flows without any fundamental reasons. Even more respected molecular ap free from these defects.

Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids - A.I. Leonov - 2012-12-06
This monograph presents theoretical and experimental studies of flows of elastic liquids. Falling into this category are particularly the melts and concentrated solutions of such flexible-chain polymers as polyethylene, polystyrene, and polypropylene, all of which are widely used in polymer processing. These polydisperse polymers vary greatly, from batch to batch, in their mechanical properties and 20% variation in a property is believed to be good enough. I 7 All recent books - devoted to the rheology of polymers do not answer the question of which constitutive equations should be used for solving the fluid mechanic problems of polymer processing in the usual case of an appreciable nonlinear region of deformation where nonlinear effects of shear and extensional elasticity are very important. Viscoelastic constitutive equations cited commonly (see, e.g. Refs 5 and 6) do not describe simultaneously even the simplest cases of deformations, viz. simple shear and uniaxial extension. Moreover, some of them are internally inconsistent ent and sometimes display highly unstable behaviour in simple flows without any fundamental reasons. Even more respected molecular ap free from these defects.

Polymer Processing Instabilities - Savvas C. Hatizikiaios - 2004-11-30
Polymer Processing Instabilities: Control and Understanding offers a practical understanding of the various flows that occur during the processing of polymer melts. The book pays particular attention to flow instabilities that affect the rate of production and the methods used to prevent and eliminate flow instabilities in order to increase production rates and enhance manufacturing efficiency. Polymer Processing Instabilities: Control and Understanding summarizes experimental observations of flow instabilities that occur in numerous processing operations such as extrusion, injection molding, fiber spinning, film casting, and film blowing for a wide range of materials, including most commodity polymers that are processed as melts at temperatures above their melting point or as concentrated solutions at lower temperatures. The book first presents the fundamental principles in rheology and flow instabilities. It relates the operating conditions with flow curves, the critical wall shear stress for the onset of the instabilities, and new visualization techniques with numerical modeling and molecular structure. It reviews one-dimensional phenomenological relaxation/oscillation models describing the experimental process. It confines the gross melt fracture (GMF) instability, and examines how traditional and non-traditional processing aids eliminate melt fracture and improve polymer processability. It supplies a numerical approach for the investigation of the linear viscoelastic stability behavior of simplified injection molding flows and examines a newly discovered family of instabilities that occur in co-extrusion. Polymer Processing Instabilities: Control and Understanding is unique in that it fills a gap in the polymer processing literature where polymer flow instabilities are not treated in-depth in any book. It summarizes state-of-the-art...
Polymer Processing Instabilities - Savvas G. Hatzikiriakos - 2004-11-30
Polymer Processing Instabilities: Control and Understanding offers a practical understanding of the various flows
that occur during the processing of polymer melts. The book pays particular attention to flow instabilities that
affect the rate of production and the methods used to prevent and eliminate flow instabilities in order to increase
production rates and enhance manufacturing efficiency. Polymer Processing Instabilities: Control and
Understanding summarizes experimental observations of flow instabilities that occur in numerous processing
operations such as extrusion, injection molding, fiber spinning, film casting, and film blowing for a wide range of
materials, including most commodity polymers that are processed as melts at temperatures above their melting
point or as concentrated solutions at lower temperatures. The book first presents the fundamental principles in
rheology and flow instabilities. It relates the operating conditions with flow curves, the critical wall shear stress
for the onset of the instabilities, and new visualization techniques with numerical modeling and molecular
structure. It reviews one-dimensional phenomenological relaxation/oscillation models describing the experimental
pressure and flow rate oscillations, analyzes the gross melt fracture (GMF) instability, and examines how
traditional and non-traditional processing aids eliminate melt fracture and improve polymer processability. It
supplies a numerical approach for the investigation of the linear viscoelastic stability behavior of simplified
injection molding flows and examines a newly discovered family of instabilities that occur in co-extrusion. Polymer
Processing Instabilities: Control and Understanding is unique in that it fills a gap in the polymer processing
literature where polymer flow instabilities are not treated in-depth in any book. It summarizes state-of-the-art
developments in the field, particularly those of the last ten years, and contains significant data based on this
research.

Predictions of Double-step Stress Relaxations Using a Novel Constitutive Equation for Polymer Melts
and Concentrated Solutions - Shin-ichi Kihara - 1996

Predictions of Double-step Stress Relaxations Using a Novel Constitutive Equation for Polymer Melts
and Concentrated Solutions - Shin-ichi Kihara - 1996

Springer Handbook of Experimental Fluid Mechanics - Cameron Tropea - 2007-10-09
Accompanying DVD-ROM contains "all chapters of the Springer Handbook."-Page 3 of cover.

Springer Handbook of Experimental Fluid Mechanics - Cameron Tropea - 2007-10-09
Accompanying DVD-ROM contains "all chapters of the Springer Handbook."-Page 3 of cover.

Fundamentals of Polymer Engineering, Third Edition - Anil Kumar - 2018-12-07
Exploring the chemistry of synthesis, mechanisms of polymerization, reaction engineering of step-growth and
chain-growth polymerization, polymer characterization, thermodynamics and structural, mechanical, thermal and
transport behavior of polymers as melts, solutions and solids, Fundamentals of Polymer Engineering, Third
Edition covers essential concepts and breakthroughs in reactor design and polymer production and processing.
It contains modern theories and real-world examples for a clear understanding of polymer function and
development. This fully updated edition addresses new materials, applications, processing techniques, and
interpretations of data in the field of polymer science. It discusses the conversion of biomass and coal to plastics
and fuels, the use of porous polymers and membranes for water purification, and the use of polymeric membranes
in fuel cells. Recent developments are brought to light in detail, and there are new sections on the improvement
of barrier properties of polymers, constitutive equations for polymer melts, additive manufacturing and polymer
recycling. This textbook is aimed at senior undergraduate students and first year graduate students in polymer
engineering and science courses, as well as professional engineers, scientists, and chemists. Examples and
problems are included at the end of each chapter for concept reinforcement.

Fundamentals of Polymer Engineering, Third Edition - Anil Kumar - 2018-12-07
Exploring the chemistry of synthesis, mechanisms of polymerization, reaction engineering of step-growth and
chain-growth polymerization, polymer characterization, thermodynamics and structural, mechanical, thermal and
transport behavior of polymers as melts, solutions and solids, Fundamentals of Polymer Engineering, Third
Edition covers essential concepts and breakthroughs in reactor design and polymer production and processing.
It contains modern theories and real-world examples for a clear understanding of polymer function and
development. This fully updated edition addresses new materials, applications, processing techniques, and
interpretations of data in the field of polymer science. It discusses the conversion of biomass and coal to plastics
and fuels, the use of porous polymers and membranes for water purification, and the use of polymeric membranes
in fuel cells. Recent developments are brought to light in detail, and there are new sections on the improvement
of barrier properties of polymers, constitutive equations for polymer melts, additive manufacturing and polymer
recycling. This textbook is aimed at senior undergraduate students and first year graduate students in polymer
engineering and science courses, as well as professional engineers, scientists, and chemists. Examples and
problems are included at the end of each chapter for concept reinforcement.

Simulation of Material Processing: Theory, Methods and Application - Ken-ichiro Mori - 2001-01-01
This volume contains about 180 papers including seven keynote presentations at the 7th NUMIFORM Conference. It
reflects the state-of-the-art of simulation of industrial forming processes such as rolling, forging, sheet metal
forming, injection moulding and casting.

Simulation of Material Processing: Theory, Methods and Application - Ken-ichiro Mori - 2001-01-01
Stability of these constitutive equations that is their predictive power, and the impact of these constitutive
reflects the state-of-the-art of simulation of industrial forming processes such as rolling, forging, sheet metal
forming, injection moulding and casting.
Polymer Melt Fracture - Rudy Koopmans - 2010-08-03
The continually growing plastics market consists of more than 250 million tons of product annually, making the
recurring problem of polymer melt fracture an acute issue in the extrusion of these materials. Presenting a
picture book of the different types of melt fracture and real industrial extrusion defect remediation strategies
based on detailed experimental and theoretical findings from the last 50 years. Distinct microscopic photos Each
chapter in this comprehensive volume covers a different aspect of the science and technology relating to polymer
melt fracture. The book begins with a collection of optical and scanning electron microscopy pictures. These
photos show distorted capillary die extrudates for a number of commercially available polymers. The authors
present a brief introduction to the basic science and technology of polymers. They explain what polymers are, how
they are made, and how they can be characterized. They also discuss polymer rheology, review the principles of
continuum mechanics, and define linear viscoelastic material functions. Techniques for observing and measuring
melt fracture. The book explains how polymer melt fracture is actually experienced in the polymer processing
industry. It explains the various ways polymer melt fracture may appear during polymer melt processing in
different extrusion processes. The authors provide comprehensive reviews of the polymer melt fracture literature,
with chapters on experimental findings and the techniques used to observe and measure polymer melt fracture,
and the influence of polymer architecture and polymer processing conditions on the onset and types of polymer
melt fracture. Posing a hypothesis about the phenomenon, the book presents the current understanding of
polymer melt fracture. Mathematical equations Recognizing the importance of models for simulations that may
indicate potential solutions, the book discusses aspects of non-linear constitutive equations and microscopic
theory and develops a macroscopic model, explaining the capabilities and limitations of this approach. The book
presents an overview of pragmatic tools and methods that have been used to prevent the appearance of polymer
melt fracture and explains how to use them to suppress defects.
Polymer Melt Fracture - Rudy Koopmans - 2010-08-03
The continually growing plastics market consists of more than 250 million tons of product annually, making the
recurring problem of polymer melt fracture an acute issue in the extrusion of these materials. Presenting a
picture book of the different forms of melt fracture and real industrial extrusion melt fracture phenomena,
Polymer Melt Fracture provides pragmatic identification and industrial extrusion defect remediation strategies
based on detailed experimental and theoretical findings from the last 50 years. Distinct microscopic photos Each
chapter in this comprehensive volume covers a different aspect of the science and technology relating to polymer
melt fracture. The book begins with a collection of optical and scanning electron microscopy pictures. These
photos show distorted capillary die extrudates for a number of commercially available polymers. The authors
present a brief introduction to the basic science and technology of polymers. They explain what polymers are, how
they are made, and how they can be characterized. They also discuss polymer rheology, review the principles of
continuum mechanics, and define linear viscoelastic material functions. Techniques for observing and measuring
melt fracture. The book explains how polymer melt fracture is actually experienced in the polymer processing
industry. It explains the various ways polymer melt fracture may appear during polymer melt processing in
different extrusion processes. The authors provide comprehensive reviews of the polymer melt fracture literature,
with chapters on experimental findings and the techniques used to observe and measure polymer melt fracture,
and the influence of polymer architecture and polymer processing conditions on the onset and types of polymer
melt fracture. Posing a hypothesis about the phenomenon, the book presents the current understanding of
polymer melt fracture. Mathematical equations Recognizing the importance of models for simulations that may
indicate potential solutions, the book discusses aspects of non-linear constitutive equations and microscopic
theory and develops a macroscopic model, explaining the capabilities and limitations of this approach. The book
presents an overview of pragmatic tools and methods that have been used to prevent the appearance of polymer
melt fracture and explains how to use them to suppress defects.
Stability of Non-Linear Constitutive Formulations for Viscoelastic Fluids
- Dennis A. Siginer - 2013-12-05
Stability of Non-Linear Constitutive Formulations for Viscoelastic Fluids provides a complete and up-to-date view
of the field of constitutive equations for flowing viscoelastic fluids, in particular on their non-linear behavior, the
equations on the dynamics of viscoelastic fluid flow in tubes. This book gives an overall view of the theories and
attendant methodologies developed independently of thermodynamic considerations as well as those set within a
thermodynamic framework to derive non-linear rheological constitutive equations for viscoelastic fluids.
Developments in formulating Maxwell-like constitutive differential equations as well as single integral constitutive
formulations are discussed in the light of Hadamard and dissipative type of instabilities.
Stability of Non-Linear Constitutive Formulations for Viscoelastic Fluids
- Dennis A. Siginer - 2013-12-05
Stability of Non-Linear Constitutive Formulations for Viscoelastic Fluids provides a complete and up-to-date view
of the field of constitutive equations for flowing viscoelastic fluids, in particular on their non-linear behavior, the
Stability of Non-Linear Constitutive Formulations for Viscoelastic Fluids - Dennis A. Siginer - 2013-12-05
Stability of Non-Linear Constitutive Formulations for Viscoelastic Fluids provides a complete and up-to-date view
of the field of constitutive equations for flowing viscoelastic fluids, in particular on their non-linear behavior, the
Stability of Non-Linear Constitutive Formulations for Viscoelastic Fluids - Dennis A. Siginer - 2013-12-05
Stability of Non-Linear Constitutive Formulations for Viscoelastic Fluids provides a complete and up-to-date view
of the field of constitutive equations for flowing viscoelastic fluids, in particular on their non-linear behavior, the
viscoelasticity, as well as new insights into the interpretation of experimental data. Although the book is balanced between the theoretical and experimental aspects of polymer rheology, the author’s particular interest in the theoretical side will not remain hidden. Aimed at readers familiar with the mathematics and physics of engineering at an undergraduate level, the multidisciplinary approach employed enables researchers with various scientific backgrounds to expand their knowledge of polymer rheology in a systematic way.

Viscoelasticity of Polymers - Kwang Soo Cho - 2016-05-30

This book offers a comprehensive introduction to polymer rheology with a focus on the viscoelastic characterization of polymeric materials. It contains various numerical algorithms for the processing of viscoelastic data, from basic principles to advanced examples which are hard to find in the existing literature. The book takes a multidisciplinary approach to the study of the viscoelasticity of polymers, and is self-contained, including the essential mathematics, continuum mechanics, polymer science and statistical mechanics needed to understand the theories of polymer viscoelasticity. It covers recent achievements in polymer rheology, such as theoretical and experimental aspects of large amplitude oscillatory shear (LAOS), and numerical methods for linear viscoelasticity, as well as new insights into the interpretation of experimental data. Although the book is balanced between the theoretical and experimental aspects of polymer rheology, the author’s particular interest in the theoretical side will not remain hidden. Aimed at readers familiar with the mathematics and physics of engineering at an undergraduate level, the multidisciplinary approach employed enables researchers with various scientific backgrounds to expand their knowledge of polymer rheology in a systematic way.

Fundamentals of Polymer Engineering, Revised and Expanded - Anil Kumar - 2003-01-21

Exploring the characterization, thermodynamics and structural, mechanical, thermal and transport behavior of polymers as melts, solutions and solids, this text covers essential concepts and breakthroughs in reactor design and polymer production and processing. It contains modern theories, end-of-chapter problems and real-world examples for a clear understanding of polymer function and development. Fundamentals of Polymer Engineering, Second Edition provides a thorough grounding in the fundamentals of polymer science for more advanced study in the field of polymers. Topics include reaction engineering of step-growth polymerization, emulsion polymerization, and polymer diffusion.

Fundamentals of Polymer Engineering, Revised and Expanded - Anil Kumar - 2003-01-21

Exploring the characterization, thermodynamics and structural, mechanical, thermal and transport behavior of polymers as melts, solutions and solids, this text covers essential concepts and breakthroughs in reactor design and polymer production and processing. It contains modern theories, end-of-chapter problems and real-world examples for a clear understanding of polymer function and development. Fundamentals of Polymer Engineering, Second Edition provides a thorough grounding in the fundamentals of polymer science for more advanced study in the field of polymers. Topics include reaction engineering of step-growth polymerization, emulsion polymerization, and polymer diffusion.

Adhesive Bonding - L.H. Lee - 2013-06-29

For several years, I have been responsible for organizing and teaching in the fall a short course on “Fundamentals of Adhesion: Theory, Practice, and Applications” at the State University of New York at New Paltz. Every spring I would try to assemble the most pertinent subjects and line up several capable lecturers for the course. However, there has always been one thing missing—an authoritative book that covers most aspects of adhesion and adhesive bonding. Such a book would be used by the participants as a main reference throughout the course and kept as a sourcebook after the course had been completed. On the other hand, this book could not be one of those “All you want to know about” volumes, simply because adhesion is an interdisciplinary and ever-growing field. For the same reason, it would be very difficult for a single individual, especially me, to undertake the task of writing such a book. Thus, I rely on the principle that one leaves the truly monumental jobs to experts, and I finally succeeded in asking several leading scientists in the field of adhesion to write separate chapters for this collection. Some chapters emphasize theoretical concepts and others experimental techniques. In the humble beginning, we planned to include only twelve chapters. However, we soon realized that such a plan would leave too much ground uncovered, and we resolved to increase the coverage. After the book had evolved into thirty chapters, we started to feel that perhaps our mission had been accomplished.

Polymer Rheology and Processing - A.A. Collyer - 1990-10-31

For several years, I have been responsible for organizing and teaching in the fall a short course on “Fundamentals of Adhesion: Theory, Practice, and Applications” at the State University of New York at New Paltz. Every spring I would try to assemble the most pertinent subjects and line up several capable lecturers for the course. However, there has always been one thing missing—an authoritative book that covers most aspects of adhesion and adhesive bonding. Such a book would be used by the participants as a main reference throughout the course and kept as a sourcebook after the course had been completed. On the other hand, this book could not be one of those “All you want to know about” volumes, simply because adhesion is an interdisciplinary and ever-growing field. For the same reason, it would be very difficult for a single individual, especially me, to undertake the task of writing such a book. Thus, I rely on the principle that one leaves the truly monumental jobs to experts, and I finally succeeded in asking several leading scientists in the field of adhesion to write separate chapters for this collection. Some chapters emphasize theoretical concepts and others experimental techniques. In the humble beginning, we planned to include only twelve chapters. However, we soon realized that such a plan would leave too much ground uncovered, and we resolved to increase the coverage. After the book had evolved into thirty chapters, we started to feel that perhaps our mission had been accomplished.

Polymer Rheology and Processing - A.A. Collyer - 1990-10-31

A thermodynamical system can be described by the field equations that are governed by the balance equations and the appropriate constitutive equations. For polymer melts or adhesives under thermal loading nonlinear constitutive equations are necessary. The development of nonlinear constitutive relations compatible with the thermodynamical principles is presented according to ordinary and extended irreversible thermodynamics. The necessary material constants in these constitutive equations are obtained by exploiting an energy based method. This method is demonstrated and applied for an epoxy (non-cured) adhesive measured in a cone-plate rheometer. The balance and constitutive equations result in a set of nonlinear and coupled field equations that is solved with analytical and numerical techniques for various problems.

A thermodynamical system can be described by the field equations that are governed by the balance equations and the appropriate constitutive equations. For polymer melts or adhesives under thermal loading nonlinear constitutive equations are necessary. The development of nonlinear constitutive relations compatible with the thermodynamical principles is presented according to ordinary and extended irreversible thermodynamics. The necessary material constants in these constitutive equations are obtained by exploiting an energy based method. This method is demonstrated and applied for an epoxy (non-cured) adhesive measured in a cone-plate rheometer. The balance and constitutive equations result in a set of nonlinear and coupled field equations that is solved with analytical and numerical techniques for various problems.

Polymer Processing - Donald G. Baird - 2014-03-10

Fundamental concepts coupled with practical, step-by-step guidance. With its emphasis on core principles, this text equips readers with the skills and knowledge to design the many processes needed to safely and successfully manufacture thermoplastic parts. Thetfirst half of the text sets forth the general theory and concepts underlying polymer processing, such as the viscoelastic response of polymeric fluids and diffusion and mass transfer. Next, the text explores specific practical aspects of polymer processing including mixing, extrusion dies, and post-die processing. By bridging a broad range of design issues and methods, the authors demonstrate how to solve most common processing problems. This text is an invaluable reference for anyone involved in polymer processing.
This book provides comprehensive coverage on the latest developments of research in the ever-expanding area of assess and reinforce their knowledge as they progress through the text. There are also special design problems throughout the text that reflect real-world polymer processing issues. A companion website features numerical subroutines as well as guidance for using MATLAB®, IMSL®, and Excel to solve the sample problems from the text. By providing both underlying theory and practical step-by-step guidance, Polymer Processing is recommended for students in chemical, mechanical, materials, and polymer engineering.

Polymer Processing - Donald G. Baird - 2014-03-10

Fundamental concepts coupled with practical, step-by-step guidance With its emphasis on core principles, this text equips readers with the skills and knowledge to design the many processes needed to safely and successfully manufacture thermoplastic parts. The first half of the text sets forth the general theory and underlying polymer processing, such as the viscoelastic response of polymeric fluids and diffusion and mass transfer. Next, the text explores specific practical aspects of polymer processing, including mixing, extrusion, and post-die processing. By addressing a broad range of design issues and methods, the authors demonstrate how to solve most common processing problems. This Second Edition of the highly acclaimed Polymer Processing has been thoroughly updated to reflect current polymer processing issues and practices. New areas of coverage include: Micro-injection molding to produce objects weighing a fraction of a gram, such as miniature gears and biomedical devices. New chapter dedicated to the recycling of thermoplastics and the processing of renewable polymers. Life-cycle assessment, a systematic method for determining whether recycling is appropriate and which form of recycling is optimal. Rheology of polymers containing fibers. Chapters feature problem sets, enabling readers to assess and reinforce their knowledge as they progress through the text. There are also special design problems throughout the text that reflect real-world polymer processing issues. A companion website features numerical subroutines as well as guidance for using MATLAB®, IMSL®, and Excel to solve the sample problems from the text. By providing both underlying theory and practical step-by-step guidance, Polymer Processing is recommended for students in chemical, mechanical, materials, and polymer engineering.

Rheology - Volume I - Crispulo Gallegos - 2010-11-30

Rheology is a component of Encyclopedia of Chemical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty Encyclopedias. Rheology is the study of the flow of matter. It is classified as a physics discipline and focuses on substances that do not maintain a constant viscosity or state of flow. That can involve liquids, soft solids and solids that are under conditions that cause them to flow. It applies to substances which have a complex molecular structure, such as muds, slurdes, suspensions, polymers and other glass formers, as well as many foods and additives, bodily fluids and other biological materials. The theme on rheology focuses on five main areas, namely: basic concepts of rheology; rheometry; rheological materials; rheological processes and theoretical rheology. Of course, many of the chapters contain material from more than one general area. Rheology is an interdisciplinary subject which embraces many aspects of mathematics, physics, chemistry, engineering and biology. These two volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.

Rheology - Volume I - Crispulo Gallegos - 2010-11-30

Rheology is a component of Encyclopedia of Chemical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty Encyclopedias. Rheology is the study of the flow of matter. It is classified as a physics discipline and focuses on substances that do not maintain a constant viscosity or state of flow. That can involve liquids, soft solids and solids that are under conditions that cause them to flow. It applies to substances which have a complex molecular structure, such as muds, slurdes, suspensions, polymers and other glass formers, as well as many foods and additives, bodily fluids and other biological materials. The theme on rheology focuses on five main areas, namely: basic concepts of rheology; rheometry; rheological materials; rheological processes and theoretical rheology. Of course, many of the chapters contain material from more than one general area. Rheology is an interdisciplinary subject which embraces many aspects of mathematics, physics, chemistry, engineering and biology. These two volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.

Key Elements in Polymers for Engineers and Chemists - Alexandr A. Berlin - 2014-05-13

This text addresses the latest developments in the field, covering the major advances that have occurred over the past five years in the polymerization and structure of new generation polystyrenes that are broadening its scope of application. It covers the advent of branched polystyrenes, syndiotactic polystyrene, high-molecular weight general purpose PS, styrenic interpolymers, and clear SBS copolymers. Presents voluminous research previously only reported at conferences in one reference Unique coverage of a topic not found in the field for a graduate course.

Modern Styrenic Polymers - John Sheirs - 2003-03-28

This title addresses the latest developments in the field, covering the major advances that have occurred over the past five years in the polymerization and structure of new generation polystyrenes that are broadening its scope of application. It covers the advent of branched polystyrenes, syndiotactic polystyrene, high-molecular weight general purpose PS, styrenic interpolymers, and clear SBS copolymers. Presents voluminous research previously only reported at conferences in one reference Unique coverage of a topic not found in the field for a graduate course.

Melt Rheology and its Applications in the Plastics Industry - John M Dealy - 2013-05-14

This is the second edition of Melt Rheology and its Role in Plastics Processing, although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that will be of direct use to practitioners. Extensive references are provided for those wishing to pursue certain issues in greater depth. While the primary audience is applied polymer scientists and plastics engineers, the book will also be of use to postgraduate students in polymer science and engineering as a text for a graduate course.

Melt Rheology and its Applications in the Plastics Industry - John M Dealy - 2013-05-14

This is the second edition of Melt Rheology and its Role in Plastics Processing, although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that will be of direct use to practitioners. Extensive references are provided for those wishing to pursue certain issues in greater depth. While the primary audience is applied polymer scientists and plastics engineers, the book will also be of use to postgraduate students in polymer science and engineering as a text for a graduate course.
and extensions of the laws of vector analysis to domains bounded by fractal curves or surfaces. The third and fourth chapters, under the heading Constitutive Modelling, present the tools necessary to formulate constitutive equations from the continuum or the microstructural approach. The last three chapters, under the caption Analytical and Numerical Techniques, contain most of the important results in the domain of the fluid mechanics of viscoelasticty, and form the core of the book. A number of topics of interest have not yet been developed to a theoretical level from which applications can be made in a routine manner. However, the authors have included these topics to make the reader aware of the state of affairs so that research into these matters can be carried out. For example, the sections which deal with domains bounded by fractal curves or surfaces show that the existence of a stress tensor in such regions is still open to question. Similarly, the constitutive modelling of suspensions, especially at high volume concentrations, with the corresponding particle migration from high to low shear regions is still very sketchy.

Trends in Food Engineering - Jorge E. Lozano - 2000-06-07
Trends in Food Engineering presents a wide vision of food engineering, with an emphasis on topics vital to the food industry today. The first section deals with physical and sensory properties of food. The emphasis in these chapters is on structure-function relationships, food rheology, and the correlations between physicochemical and sensory data.

Trends in Food Engineering - Jorge E. Lozano - 2000-06-07
Trends in Food Engineering presents a wide vision of food engineering, with an emphasis on topics vital to the food industry today. The first section deals with physical and sensory properties of food. The emphasis in these chapters is on structure-function relationships, food rheology, and the correlations between physicochemical and sensory data.

New Trends in Physics and Physical Chemistry of Polymers - Liang-Huang Lee - 2012-12-06
Between June 6-10, 1988, the Third Chemical Congress of North America was held at the Toronto Convention Center. At this rare gathering, fifteen thousand scientists attended various symposia. In one of the symposia, Professor Pierre-Gilles de Gennes of College de France was honored as the 1988 recipient of the Amer ican Chemical Society Polymer Chemistry Award, sponsored by Mobil Chemical Corporation. For Professor de Gennes, this international setting could not be more fitting. For years, he has been a friend and a lecturer to the world of scientific community. Thus, for this special occasion, his friends came to recount many of his achievements or report new research findings mostly derived from his theories or stimulated by his thoughts. In this volume of Proceedings, titled New Trends in Physics and Physical Chemistry of Polymers, we are glad to present the revised papers for the Symposium and some contributed after the Symposium. In addition, we intend to include most of the lively discussions that took place during the conference. This volume contains a total of thirty-six papers divided into six parts, primarily according to the nature of the subject matter: • Adsorption of Colloids and
Diffusion and Interdiffusion of Polymers. • Entanglement and Reptation of Polymer Melts and Networks. • Phase Transitions and Gel Electrophoresis.

New Trends in Physics and Physical Chemistry of Polymers - Lieng-Huang Lee - 2012-12-06
Between June 6-10, 1988, the Third Chemical Congress of North America was held at the Toronto Convention Center. At this rare gathering, fifteen thousand scientists attended various symposia. In one of the symposia, Professor Pierre-Gilles de Gennes of Collège de France was honored as the 1988 recipient of the American Chemical Society Polymer Chemistry Award, sponsored by Mobil Chemical Corporation. For Professor de Gennes, this international setting could not be more fitting. For years, he has been a friend and a lecturer to the world scientific community. Thus, for this special occasion, his friends came to recount many of his achievements or report new research findings mostly derived from his theories or stimulated by his thoughts. In this volume of Proceedings, titled New Trends in Physics and Physical Chemistry of Polymers, we are glad to present the revised papers for the Symposium and some contributed after the Symposium. In addition, we intend to include most of the lively discussions that took place during the conference. This volume contains a total of thirty-six papers divided into six parts, primarily according to the nature of the subject matter: • Adsorption of Colloids and Polymers. • Adhesion, Fractal and Wetting of Polymers. • Dynamics and Characterization of Polymer Solutions. • Diffusion and Interdiffusion of Polymers. • Entanglement and Reptation of Polymer Melts and Networks. • Phase Transitions and Gel Electrophoresis.

Mechanics of Polymer Processing - J.R. Pearson - 1985-01-31

Mechanics of Polymer Processing - J.R. Pearson - 1985-01-31